
This book is licensed under a Creative Commons Attribution 3.0 License

14. Straight lines and circles
Learning objectives:

• intersection of two line segments

• degenerate configurations

• clipping

• digitized lines and circles

• Bresenham's algorithms

• braiding straight lines

Points are the simplest geometric objects; straight lines and line segments come next. Together, they make up

the lion's share of all primitive objects used in two-dimensional geometric computation (e.g. in computer graphics).

Using these two primitives only, we can approximate any curve and draw any picture that can be mapped onto a

discrete raster. If we do so, most queries about complex figures get reduced to basic queries about points and line

segments, such as: is a given point to the left, to the right, or on a given line? Do two given line segments intersect?

As simple as these questions appear to be, they must be handled efficiently and carefully. Efficiently because these

basic primitives of geometric computations are likely to be executed millions of times in a single program run.

Carefully because the ubiquitous phenomenon of degenerate configurations easily traps the unwary programmer

into overflow or meaningless results.

Intersection

The problem of deciding whether two line segments intersect is unexpectedly tricky, as it requires a

consideration of three distinct nondegenerate cases, as well as half a dozen degenerate ones. Starting with

degenerate objects, we have cases where one or both of the line segments degenerate into points. The code below

assumes that line segments of length zero have been eliminated. We must also consider nondegenerate objects in

degenerate configurations, as illustrated in Exhibit 14.1. Line segments A and B intersect (strictly). C and D, and E

and F, do not intersect; the intersection point of the infinitely extended lines lies on C in the first case, but lies

neither on E nor on F in the second case. The next three cases are degenerate: G and H intersect barely (i.e. in an

endpoint); I and J overlap (i.e. they intersect in infinitely many points); K and L do not intersect. Careless

evaluation of these last two cases is likely to generate overflow.

Exhibit 14.1: Cases to be distinguished for the segment intersection problem.

Computing the intersection point of the infinitely extended lines is a naive approach to this decision problem

that leads to a three-step process:

Algorithms and Data Structures 119 A Global Text

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

1. Check whether the two line segments are parallel (a necessary precaution before attempting to compute the

intersection point). If so, we have a degenerate configuration that leads to one of three special cases: not

collinear, collinear nonoverlapping, collinear overlapping

2. Compute the intersection point of the extended lines (this step is still subject to numerical problems for

lines that are almost parallel).

3. Check whether this intersection point lies on both line segments.

If all we want is a yes/no answer to the intersection question, we can save the effort of computing the

intersection point and obtain a simpler and more robust procedure based on the following idea: two line segments

intersect strictly iff the two endpoints of each line segment lie on opposite sides of the infinitely extended line of the

other segment.

Let L be a line given by the equation h(x, y) = a · x + b · y + c = 0, where the coefficients have been normalized

such that a2 + b2 = 1. For a line L given in this Hessean normal form, and for any point p = (x, y), the function h

evaluated at p yields the signed distance between p and L: h(p) > 0 if p lies on one side of L, h(p) < 0 if p lies on the

other side, and h(p) = 0 if p lies on L. A line segment is usually given by its endpoints (x 1, y1) and (x2, y2), and the

Hessean normal form of the infinitely extended line L that passes through (x 1, y1) and (x2, y2) is

where

is the length of the line segment, and h(x, y) is the distance of p = (x, y) from L. Two points p and q lie on opposite

sides of L iff h(p) · h(q) < 0 (Exhibit 14.2). h(p) = 0 or h(q) = 0 signals a degenerate configuration. Among these,

h(p) = 0 and h(q) = 0 iff the segment (p, q) is collinear with L.

Exhibit 14.2: Segment s, its extended line L, and distance to points p, q as computed by function h.

type point = record x, y: real end;

segment = record p1, p2: point end;

function d(s: segment; p: point): real;

{ computes h(p) for the line L determined by s }

var dx, dy, L12: real;

120

This book is licensed under a Creative Commons Attribution 3.0 License

begin

dx := s.p2.x – s.p1.x; dy := s.p2.y – s.p1.y;

L12 := sqrt(dx · dx + dy · dy);

return((dy · (p.x – s.p1.x) – dx · (p.y – s.p1.y)) / L12)

end;

To optimize the intersection function, we recall the assumption L12 > 0 and notice that we do not need the actual

distance, only its sign. Thus the function d used below avoids computing L12. The function 'intersect' begins by

checking whether the two line segments are collinear, and if so, tests them for overlap by intersecting the intervals

obtained by projecting the line segments onto the x-axis (or onto the y-axis, if the segments are vertical). Two

intervals [a, b] and [c, d] intersect iff min(a, b) ≤ max(c, d) and min(c, d) ≤ max(a, b). This condition could be

simplified under the assumption that the representation of segments and intervals is ordered "from left to right"

(i.e. for interval [a, b] we have a ≤ b). We do not assume this, as line segments often have a natural direction and

cannot be "turned around".

function d(s: segment; p: point): real;

begin

return((s.p2.y – s.p1.y) · (p.x – s.p1.x) – (s.p2.x – s.p1.x) ·

(p.y – s.p1.y))

end;

function overlap(a, b, c, d: real): boolean;

begin return((min(a, b) ≤ max(c, d)) and (min(c, d) ≤ max(a, b)))

end;

function intersect(s1, s2: segment): boolean;

var d11, d12, d21, d22: real;

begin

d11 := d(s1, s2.p1); d12 := d(s1, s2.p2);

if (d11 = 0) and (d12 = 0) then { s1 and s2 are collinear }

if s1.p1.x = s1.p2.x then { vertical }

return(overlap(s1.p1.y, s1.p2.y, s2.p1.y, s2.p2.y))

else { not vertical }

return(overlap(s1.p1.x, s1.p2.x, s2.p1.x, s2.p2.x))

else begin { s1 and s2 are not collinear }

d21 := d(s2, s1.p1); d22 := d(s2, s1.p2);

return((d11 · d12 ≤ 0) and (d21 · d22 ≤ 0))

end

end;

In addition to the degeneracy issues we have addressed, there are numerical issues of near-degeneracy that we

only mention. The length L12 is a condition number (i.e. an indicator of the computation's accuracy). As Exhibit 14.3

suggests, it may be numerically impossible to tell on which side of a short line segment L a distant point p lies.

Algorithms and Data Structures 121 A Global Text

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

Exhibit 14.3: A point's distance from a segment amplifies the error of the "which side" computation.

Conclusion: A geometric algorithm must check for degenerate configurations explicitly—the code that handles

configurations "in general position" will not handle degeneracies.

Clipping

The widespread use of windows on graphic screens makes clipping one of the most frequently executed

operations: Given a rectangular window and a configuration in the plane, draw that part of the configuration which

lies within the window. Most configurations consist of line segments, so we show how to clip a line segment given

by its endpoints (x1, y1) and (x2, y2) into a window given by its four corners with coordinates {left, right} × {top,

bottom}.

The position of a point in relation to the window is described by four boolean variables: ll (to the left of the left

border), rr (to the right of the right border), bb (below the lower border), tt (above the upper border):

type wcode = set of (ll, rr, bb, tt);

A point inside the window has the code ll = rr = bb = tt = false, abbreviated 0000 (Exhibit 14.4).

Exhibit 14.4: The clipping window partitions the plane into nine regions.

The procedure 'classify' determines the position of a point in relation to the window:

procedure classify(x, y: real; var c: wcode);

begin

c := Ø; { empty set }

if x < left then c := {ll} elsif x > right then c := {rr};

if y < bottom then c := c ∪ {bb} elsif y > top then c := c ∪
{tt}

end;

The procedure 'clip' computes the endpoints of the clipped line segment and calls the procedure 'showline' to

draw it:

procedure clip(x1, y1, x2, y2: real);

122

p

L

This book is licensed under a Creative Commons Attribution 3.0 License

var c, c1, c2: wcode; x, y: real; outside: boolean;

begin { clip }

classify(x1, y1, c1); classify(x2, y2, c2); outside := false;

while (c1 ≠ Ø) or (c2 ≠ Ø) do

if c1 ∩ c2 ≠ Ø then
{ line segment lies completely outside the window }

{ c1 := Ø; c2 := Ø; outside := true }

else begin

c := c1;

if c = Ø then c := c2;

if ll ∈ c then { segment intersects left }
{ y := y1 + (y2 – y1) · (left – x1) / (x2 – x1); x := left }

elsif rr ∈ c then { segment intersects right }
{ y := y1 + (y2 – y1) · (right – x1) / (x2 – x1); x := right }

elsif bb ∈ c then { segment intersects bottom }
{ x := x1 + (x2 – x1) · (bottom – y1) / (y2 – y1); y := bottom }

elsif tt ∈ c then { segment intersects top }
{ x := x1 + (x2 – x1) · (top – y1) / (y2 – y1); y := top };

if c = c1 then { x1 := x; y1 := y; classify(x, y, c1) }

else { x2 := x; y2 := y; classify(x, y, c2) }

end;

if not outside then showline(x1, y1, x2, y2)

end; { clip }

Drawing digitized lines

A raster graphics screen is an integer grid of pixels, each of which can be turned on or off. Euclidean geometry

does not apply directly to such a discretized plane. Any designer using a CAD system will prefer Euclidean geometry

to a discrete geometry as a model of the world. The problem of how to approximate the Euclidean plane by an

integer grid turns out to be a hard question: How do we map Euclidean geometry onto a digitized space in such a

way as to preserve the rich structure of geometry as much as possible? Let's begin with simple instances: How do

you map a straight line onto an integer grid, and how do you draw it efficiently? Exhibit 14.5 shows reasonable

examples.

Exhibit 14.5: Digitized lines look like staircases.

Consider the slope m = (y2 – y1) / (x2 – x1) of a segment with endpoints p1 = (x1, y1) and p2 = (x2, y2). If |m| ≤ 1 we

want one pixel blackened on each x coordinate; if |m| ≥ 1, one pixel on each y coordinate; these two requirements

are consistent for diagonals with |m| = 1. Consider the case |m| ≤ 1. A unit step in x takes us from point (x, y) on the

line to (x + 1, y + m). So for each x between x1 and x2 we paint the pixel (x, y) closest to the mathematical line

according to the formula y = round(y1 + m · (x – x1)). For the case |m| > 1, we reverse the roles of x and y, taking a

unit step in y and incrementing x by 1/m. The following procedure draws line segments with |m| ≤ 1 using unit

steps in x.

procedure line(x1, y1, x2, y2: integer);

var x, sx: integer; m: real;

Algorithms and Data Structures 123 A Global Text

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

begin

PaintPixel(x1, y1);

if x1 ≠ x2 then begin

x := x1; sx := sgn(x2 – x1); m := (y2 – y1) / (x2 – x1);

while x ≠ x2 do

{ x := x + sx; PaintPixel(x, round(y1 + m · (x – x1))) }

end

end;

This straightforward implementation has a number of disadvantages. First, it uses floating-point arithmetic to

compute integer coordinates of pixels, a costly process. In addition, rounding errors may prevent the line from

being reversible: reversibility means that we paint the same pixels, in reverse order, if we call the procedure with

the two endpoints interchanged. Reversibility is desirable to avoid the following blemishes: that a line painted

twice, from both ends, looks thicker than other lines; worse yet, that painting a line from one end and erasing it

from the other leaves spots on the screen. A weaker constraint, which is only concerned with the result and not the

process of painting, is easy to achieve but is less useful.

Weak reversibility is most easily achieved by ordering the points p1 and p2 lexicographically by x and y

coordinates, drawing every line from left to right, and vertical lines from bottom to top. This solution is inadequate

for animation, where the direction of drawing is important, and the sequence in which the pixels are painted is

determined by the application—drawing the trajectory of a falling apple from the bottom up will not do. Thus

interactive graphics needs the stronger constraint.

Efficient algorithms, such as Bresenham's [Bre 65], avoid floating-point arithmetic and expensive

multiplications through incremental computation: Starting with the current point p1, a next point is computed as a

function of the current point and of the line segment parameters. It turns out that only a few additions, shifts, and

comparisons are required. In the following we assume that the slope m of the line satisfies |m| ≤ 1. Let

∆x = x2 – x1, sx = sign(∆x), ∆y = y2 – y1, sy = sign(∆y).

Assume that the pixel (x, y) is the last that has been determined to be the closest to the actual line, and we now

want to decide whether the next pixel to be set is (x + sx, y) or (x + sx, y + sy). Exhibit 14.6 depicts the case sx = 1

and sy = 1.

Exhibit 14.6: At the next coordinate x + sx, we identify and paint the pixel closest to the line.

Let t denote the absolute value of the difference between y and the point with abscissa x + sx on the actual line.

Then t is given by

124

This book is licensed under a Creative Commons Attribution 3.0 License

The value of t determines the pixel to be drawn:

As the following example shows, reversibility is not an automatic consequence of the geometric fact that two

points determine a unique line, regardless of correct rounding or the order in which the two endpoints are

presented. A problem arises when two grid points are equally close to the straight line (Exhibit 14.7).

Exhibit 14.7: Breaking the tie among equidistant grid points.

If the tie is not broken in a consistent manner (e.g. by always taking the upper grid point), the resulting

algorithm fails to be reversible:

All the variables introduced in this problem range over the integers, but the ratio
(Δ y)

(Δ x)
 appears to introduce

rational expressions. This is easily remedied by multiplying everything with ∆x. We define the decision variable d as

d = |∆x| · (2 · t – 1) = sx · ∆x · (2 · t – 1). (∗∗)

Let di denote the decision variable which determines the pixel (x (i), y(i)) to be drawn in the i-th step. Substituting t

and inserting x = x(i–1) and y = y(i–1) in (∗∗) we obtain

di = sx · sy · (2·∆x · y1 + 2 · (x(i–1) + sx – x1) · ∆y – 2·∆x · y(i–1) – ∆x · sy)

and

di+1 = sx · sy · (2·∆x · y1 + 2 · (x(i) + sx – x1) · ∆y – 2·∆x · y(i) – ∆x · sy).

Subtracting di from di+1, we get

di+1 – di = sx · sy · (2 · (x(i) – x(i–1)) · ∆y – 2 · ∆x · (y(i) – y(i–1))).

Since x(i) – x(i–1) = sx, we obtain

di+1 = di + 2 · sy · ∆y – 2 · sx · ∆x · sy · (y(i) – y(i–1)).

Algorithms and Data Structures 125 A Global Text

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

If di < 0, or di = 0 and sy = –1, then y(i) = y(i–1), and therefore

di+1 = di + 2 · |∆y|.

If di > 0, or di = 0 and sy = 1, then y(i) = y(i–1) + sy, and therefore

di+1 = di + 2 · |∆y| – 2 · |∆x|.

This iterative computation of di+1 from the previous di lets us select the pixel to be drawn. The initial starting

value for d1 is found by evaluating the formula for di, knowing that (x(0), y(0)) = (x1, y1). Then we obtain

d1 = 2 · |∆y| – |∆x|.

The arithmetic needed to evaluate these formulas is minimal: addition, subtraction and left shift (multiplication

by 2). The following procedure implements this algorithm; it assumes that the slope of the line is between –1 and 1.

procedure BresenhamLine(x1, y1, x2, y2: integer);

var dx, dy, sx, sy, d, x, y: integer;

begin

dx := |x2 – x1|; sx := sgn(x2 – x1);

dy := |y2 – y1|; sy := sgn(y2 – y1);

d := 2 · dy – dx; x := x1; y := y1;

PaintPixel(x, y);

while x ≠ x2 do begin

if (d > 0) or ((d = 0) and (sy = 1)) then { y := y + sy;–

2·dx};

x := x + sx; d := d + 2 · dy;

PaintPixel(x, y)

end

end;

The riddle of the braiding straight lines

Two straight lines in a plane intersect in at most one point, right? Important geometric algorithms rest on this

well-known theorem of Euclidean geometry and would have to be reexamined if it were untrue. Is this theorem true

for computer lines, that is, for data objects that represent and approximate straight lines to be processed by a

program? Perhaps yes, but mostly no.

Yes. It is possible, of course, to program geometric problems in such a way that every pair of straight lines has at

most, or exactly, one intersection point. This is most readily achieved through symbolic computation. For example,

if the intersection of L1 and L2 is denoted by an expression 'Intersect(L1, L2)' that is never evaluated but simply

combined with other expressions to represent a geometric construction, we are free to postulate that 'Intersect(L 1,

L2)' is a point.

No. For reasons of efficiency, most computer applications of geometry require the immediate numerical

evaluation of every geometric operation. This calculation is done in a discrete, finite number system in which case

the theorem need not be true. This fact is most easily seen if we work with a discrete plane of pixels, and we

represent a straight line by the set of all pixels touched by an ideal mathematical line. Exhibit 14.8 shows three

digitized straight lines in such a square grid model of plane geometry. Two of the lines intersect in a common

interval of three pixels, whereas two others have no pixel in common, even though they obviously intersect.

126

This book is licensed under a Creative Commons Attribution 3.0 License

Exhibit 14.8: Two intersecting lines may share none, one, or more pixels.

With floating-point arithmetic the situation is more complicated; but the fact remains that the Euclidean plane

is replaced by a discrete set of points embedded in the plane—all those points whose coordinates are representable

in the particular number system being used. Experience with numerical computation, and the hazards of rounding

errors, suggests that the question "In how many points can two straight lines intersect?" admits the following

answers:

• There is no intersection—the mathematically correct intersection cannot be represented in the number

system.

• A set of points that lie close to each other: for example, an interval.

• Overflow aborts the calculation before a result is computed, even if the correct result is representable in the

number system being used.

Exercise: two lines intersect in how many points?

Construct examples to illustrate these phenomena when using floating-point arithmetic. Choose a suitable

system G of floating-point numbers and two distinct straight lines

ai · x + bi · y + ci = 0 with ai, bi, ci ∈ G, i=1, 2,

such that, when all operations are performed in G:

(a) There is no point whose coordinates x, y ∈ G satisfy both linear equations.

(b) There are many points whose coordinates x, y ∈ G satisfy both linear equations.

(c) There is exactly one point whose coordinates x, y ∈ G satisfy both linear equations, but the straightforward

computation of x and y leads to overflow.

(d) As a consequence of (a) it follows that the definition "two lines intersect they share a common point" is

inappropriate for numerical computation. Formulate a numerically meaningful definition of the statement

"two line segments intersect".

Exercise (b) may suggest that the points shared by two lines are neighbors. Pictorially, if the slopes of the two

lines are almost identical, we expect to see a blurred, elongated intersection. We will show that worse things may

happen: two straight lines may intersect in arbitrarily many points, and these points are separated by intervals in

which the two lines alternate in lying on top of each other. Computer lines may be braided! To understand this

Algorithms and Data Structures 127 A Global Text

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

phenomenon, we need to clarify some concepts: What exactly is a straight line represented on a computer? What is

an intersection?

There is no one answer, there are many! Consider the analogy of the mathematical concept of real numbers,

defined by axioms. When we approximate real numbers on a computer, we have a choice of many different number

systems (e.g. various floating-point number systems, rational arithmetic with variable precision, interval

arithmetic). These systems are typically not defined by means of axioms, but rather in terms of concrete

representations of the numbers and algorithms for executing the operations on these numbers. Similarly, a

computer line will be defined in terms of a concrete representation (e.g. two points, a point and a slope, or a linear

expression). All we obtain depends on the formulas we use and on the basic arithmetic to operate on these

representations. The notion of a straight line can be formalized in many different ways, and although these are

likely to be mathematically equivalent, they will lead to data objects with different behavior when evaluated

numerically. Performing an operation consists of evaluating a formula. Substituting a formula by a mathematically

equivalent one may lead to results that are topologically different, because equivalent formulas may exhibit

different sensitivities toward rounding errors.

Consider a computer that has only integer arithmetic, i.e. we use only the operations +, –, ·, div. Let Z be the set

of integers. Two straight lines gi (i = 1, 2) are given by the following equations:

ai · x + bi · y + ci = 0 with ai, bi, ci ∈ Z; bi ≠ 0.

We consider the problem of whether two given straight lines intersect in a given point x0. We use the following

method: Solve the equations for y [i. e. y = E1(x) and y = E2(x)] and test whether E1(x0) is equal to E2(x0).

Is this method suitable? First, we need the following definitions:

x ∈ Z is a turn for the pair (E1, E2) iff

sign(E1(x) – E2(x)) ≠ sign(E1(x + 1) – E2(x + 1)).

An algorithm for the intersection problem is correct iff there are at most two turns.

The intuitive idea behind this definition is the recognition that rounding errors may force us to deal with an

intersection interval rather than a single intersection point; but we wish to avoid separate intervals. The definition

above partitions the x-axis into at most three disjoint intervals such that in the left interval the first line lies above

or below the second line, in the middle interval the lines "intersect", and in the right interval we have the

complementary relation of the left one (Exhibit 14.9).

128

This book is licensed under a Creative Commons Attribution 3.0 License

Exhibit 14.9: Desirable consistency condition for intersection of nearly parallel lines.

Consider the straight lines:

3 · x – 5 · y + 40 = 0 and 2 · x – 3 · y + 20 = 0

which lead to the evaluation formulas

Our naive approach compares the expressions

(3 · x + 40) div 5 and (2 · x + 20) div 3.

Using the definitions it is easy to calculate that the turns are

7, 8, 10, 11, 12, 14, 15, 22, 23, 25, 26, 27, 29, 30.

The straight lines have become step functions that intersect many times. They are braided (Exhibit 14.10).

Exhibit 14.10: Braiding straight lines violate the consistency condition of Exhibit 14.9.

Exercise: show that the straight lines

x – 2 · y = 0

k · x – (2 · k + 1) · y = 0 for any integer k > 0

Algorithms and Data Structures 129 A Global Text

g
1

>g
1

g
2 =g

1
g

2
<g

1
g

2

g
2

y

x

2 4 6 8 10 12 14 16 18 20 22 24 26 30 32 34 36 38

9
11
13
15
17
19
21
23
25
27
29
31

y

x

(3x + 40) div 5

(2x + 20) div 3

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

have 2 · k – 1 turns in the first quadrant.

Is braiding due merely to integer arithmetic? Certainly not: rounding errors also occur in floating-point

arithmetic, and we can construct even more pathological behavior. As an example, consider a floating-point

arithmetic with a two-decimal-digit mantissa. We perform the evaluation operation:

and truncate intermediate results immediately to two decimal places. Consider the straight lines (Exhibit 14.11)

4.3 · x – 8.3 · y = 0,

1.4 · x – 2.7 · y = 0.

Exhibit 14.11: Example to be verified by manual computation.

These examples were constructed by intersecting straight lines with almost the same slope—a numerically ill-

conditioned problem. While working with integer arithmetic, we made the mistake of using the error-prone 'div'

operator. The comparison of rational expressions does not require division.

Let a1 · x + b1 · y + c1 = 0 and a2 · x + b2 · y + c2 = 0 be two straight lines. To find out whether they intersect at x0,

we have to check whether the equality

holds. This is equivalent to b2 · c1 – b1 · c2 = x0 · (a2 · b1 – a1 · b2).

The last formula can be evaluated without error if sufficiently large integer arguments are allowed. Another way

to evaluate this formula without error is to limit the size of the operands. For example, if a i, bi, ci, and x0 are n-digit

binary numbers, it suffices to be able to represent 3n-digit binary numbers and to compute with n-digit and 2n-

digit binary numbers.

These examples demonstrate that programming even a simple geometric problem can cause unexpected

difficulties. Numerical computation forces us to rethink and redefine elementary geometric concepts.

130

0.37

0.39

0.73 0.77 0.81 0.85 0.89 0.93

0.41

0.43

0.45

0.47

y

x

1.4 ×ξ
2.7

4.3 ×ξ
8.3

This book is licensed under a Creative Commons Attribution 3.0 License

Digitized circles

The concepts, problems and techniques we have discussed in this chapter are not at all restricted to dealing with

straight lines—they have their counterparts for any kind of digitized spatial object. Straight lines, defined by linear

formulas, are the simplest nontrivial spatial objects and thus best suited to illustrate problems and solutions. In this

section we show that the incremental drawing technique generalizes in a straightforward manner to more complex

objects such as circles.

The basic parameters that define a circle are the center coordinates (xc, yc) and the radius r. To simplify the

presentation we first consider a circle with radius r centered around the origin. Such a circle is given by the

equation

x2 + y2 = r2.

Efficient algorithms for drawing circles, such as Bresenham's [Bre 77], avoid floating-point arithmetic and

expensive multiplications through incremental computation: A new point is computed depending on the current

point and on the circle parameters. Bresenham's circle algorithm was conceived for use with pen plotters and

therefore generates all points on a circle centered at the origin by incrementing all the way around the circle. We

present a modified version of his algorithm which takes advantage of the eight-way symmetry of a circle. If (x, y) is

a point on the circle, we can easily determine seven other points lying on the circle (Exhibit 14.12). We consider only

the 45˚ segment of the circle shown in the figure by incrementing from x = 0 to x = y = r / , and use eight-way

symmetry to display points on the entire circle.

Exhibit 14.12: Eightfold symmetry of the circle.

Assume that the pixel p = (x, y) is the last that has been determined to be closest to the actual circle, and we now

want to decide whether the next pixel to be set is p1 = (x + 1, y) or p2 = (x + 1, y – 1). Since we restrict ourselves to

the 45˚ circle segment shown above these pixels are the only candidates. Now define

d' = (x + 1)2 + y2 – r2

d" = (x + 1)2 + (y – 1)2 – r2

which are the differences between the squared distances from the center of the circle to p 1 (or p2) and to the actual

circle. If |d'| ≤ |d"|, then p1 is closer (or equidistant) to the actual circle; if |d'| > |d"|, then p2 is closer. We define the

decision variable d as

d = d' + d". (∗∗)

We will show that the rule

If d ≤ 0 then select p1 else select p2.

Algorithms and Data Structures 131 A Global Text

http://creativecommons.org/licenses/by/3.0/

14. Straight lines and circles

correctly selects the pixel that is closest to the actual circle. Exhibit 14.13 shows a small part of the pixel grid and

illustrates the various possible ways [(1) to (5)] how the actual circle may intersect the vertical line at x + 1 in

relation to the pixels p1 and p2.

Exhibit 14.13: For a given octant of the circle, if pixel p is lit, only two other pixels

p1 and p2 need be examined.

In cases (1) and (2) p2 lies inside, p1 inside or on the circle, and we therefore obtain d' ≤ 0 and d" < 0. Now d < 0,

and applying the rule above will lead to the selection of p 1. Since |d'| ≤ |d"| this selection is correct. In case (3) p 1

lies outside and p2 inside the circle and we therefore obtain d' > 0 and d" < 0. Applying the rule above will lead to

the selection of p1 if d ≤ 0, and p2 if d > 0. This selection is correct since in this case d ≤ 0 is equivalent to |d'| ≤ |d"|.

In cases (4) and (5) p1 lies outside, p2 outside or on the circle and we therefore obtain d' > 0 and d" ≥ 0. Now d > 0,

and applying the rule above will lead to the selection of p2. Since |d'| > |d"| this selection is correct.

Let di denote the decision variable that determines the pixel (x (i), y(i)) to be drawn in the i-th step. Starting with

(x(0), y(0)) = (0, r) we obtain

d1 = 3 – 2 · r.

If di ≤ 0, then (x(i), y(i)) = (x(i) + 1, y(i–1)), and therefore

di+1 = di + 4 · xi–1 + 6.

If di > 0, then (x(i), y(i)) = (x(i) + 1, y(i–1) – 1), and therefore

di+1 = di + 4 · (xi–1 – yi–1) + 10.

This iterative computation of di+1 from the previous di lets us select the correct pixel to be drawn in the (i + 1)-th

step. The arithmetic needed to evaluate these formulas is minimal: addition, subtraction, and left shift

(multiplication by 4). The following procedure 'BresenhamCircle' which implements this algorithm draws a circle

with center (xc, yc) and radius r. It uses the procedure 'CirclePoints' to display points on the entire circle. In the

cases x = y or r = 1 'CirclePoints' draws each of four pixels twice. This causes no problem on a raster display.

procedure BresenhamCircle(xc, yc, r: integer);

procedure CirclePoints(x, y: integer);

begin

PaintPixel(xc + x, yc + y); PaintPixel(xc – x, yc + y);

PaintPixel(xc + x, yc – y); PaintPixel(xc – x, yc – y);

PaintPixel(xc + y, yc + x); PaintPixel(xc – y, yc + x);

PaintPixel(xc + y, yc – x); PaintPixel(xc – y, yc – x)

end;

132

This book is licensed under a Creative Commons Attribution 3.0 License

var x, y, d: integer;

begin

x := 0; y := r; d := 3 – 2 · r;

while x < y do begin

CirclePoints(x, y);

if d < 0 then d := d + 4 · x + 6

else { d := d + 4 · (x – y) + 10; y := y – 1 };

x := x + 1

end;

if x = y then CirclePoints(x, y)

end; .i).Bresenham's algorithm:circle;

Exercises and programming projects

1. Design and implement an efficient geometric primitive which determines whether two aligned rectangles

(i.e. rectangles with sides parallel to the coordinate axes) intersect.

2. Design and implement a geometric primitive

function inTriangle(t: triangle; p: point): …;

which takes a triangle t given by its three vertices and a point p and returns a ternary value: p is inside t, p

is on the boundary of t, p is outside t.

3. Use the functions 'intersect' of in "Intersection" and 'inTriangle' above to program a

function SegmentIntersectsTriangle(s: segment; t: triangle): …;

to check whether segment s and triangle t share common points. 'SegmentIntersectsTriangle' returns a

ternary value: yes, degenerate, no. List all distinct cases of degeneracy that may occur, and show how your

code handles them.

4. Implement Bresenham's incremental algorithms for drawing digitized straight lines and circles.

5. Two circles (x', y', r') and (x'', y'', r'') are given by the coordinates of their center and their radius. Find

effective formulas for deciding the three-way question whether (a) the circles intersect as lines, (b) the

circles intersect as disks, or (c) neither. Avoid the square-root operation whenever possible.

Algorithms and Data Structures 133 A Global Text

http://creativecommons.org/licenses/by/3.0/

