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14. Straight lines and circles
Learning objectives:

• intersection of two line segments

• degenerate configurations

• clipping

• digitized lines and circles

• Bresenham's algorithms

• braiding straight lines

Points are the simplest geometric objects; straight lines and line segments come next. Together, they make up 

the lion's share of all primitive objects used in two-dimensional geometric computation (e.g. in computer graphics). 

Using these two primitives only, we can approximate any curve and draw any picture that can be mapped onto a  

discrete raster. If we do so, most queries about complex figures get reduced to basic queries about points and line 

segments, such as: is a given point to the left, to the right, or on a given line? Do two given line segments intersect? 

As simple as these questions appear to be, they must be handled efficiently and carefully. Efficiently because these 

basic primitives of geometric computations are likely to be executed millions of times in a single program run.  

Carefully because the ubiquitous phenomenon of degenerate configurations easily traps the unwary programmer 

into overflow or meaningless results.

Intersection

The  problem  of  deciding  whether  two  line  segments  intersect  is  unexpectedly  tricky,  as  it  requires  a 

consideration  of  three  distinct  nondegenerate  cases,  as  well  as  half  a  dozen  degenerate  ones.  Starting  with 

degenerate objects, we have cases where one or both of the line segments degenerate into points. The code below 

assumes that line segments of length zero have been eliminated. We must also consider nondegenerate objects in 

degenerate configurations, as illustrated in Exhibit 14.1. Line segments A and B intersect (strictly). C and D, and E 

and F, do not intersect; the intersection point of the infinitely extended lines lies on C in the first case, but lies  

neither on E nor on F in the second case. The next three cases are degenerate: G and H intersect barely (i.e. in an  

endpoint);  I  and  J  overlap  (i.e.  they  intersect  in  infinitely  many  points);  K  and  L  do  not  intersect.  Careless  

evaluation of these last two cases is likely to generate overflow.

Exhibit 14.1: Cases to be distinguished for the segment intersection problem.

Computing the intersection point of the infinitely extended lines is a naive approach to this decision problem  

that leads to a three-step process:
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1. Check whether the two line segments are parallel (a necessary precaution before attempting to compute the 

intersection point). If so, we have a degenerate configuration that leads to one of three special cases: not  

collinear, collinear nonoverlapping, collinear overlapping

2. Compute the intersection point of the extended lines (this step is still subject to numerical problems for  

lines that are almost parallel).

3. Check whether this intersection point lies on both line segments.

If  all  we  want  is  a  yes/no  answer  to  the  intersection  question,  we  can  save  the  effort  of  computing  the 

intersection point and obtain a simpler and more robust procedure based on the following idea: two line segments  

intersect strictly iff the two endpoints of each line segment lie on opposite sides of the infinitely extended line of the 

other segment.

Let L be a line given by the equation h(x, y) = a · x + b · y + c = 0, where the coefficients have been normalized  

such that a2 + b2 = 1. For a line L given in this Hessean normal form, and for any point p = (x, y), the function h 

evaluated at p yields the signed distance between p and L: h(p) > 0 if p lies on one side of L, h(p) < 0 if p lies on the  

other side, and h(p) = 0 if p lies on L. A line segment is usually given by its endpoints (x 1, y1) and (x2, y2), and the 

Hessean normal form of the infinitely extended line L that passes through (x 1, y1) and (x2, y2) is 

where 

is the length of the line segment, and h(x, y) is the distance of p = (x, y) from L. Two points p and q lie on opposite  

sides of L iff h(p) · h(q) < 0 (Exhibit 14.2). h(p) = 0 or h(q) = 0 signals a degenerate configuration. Among these, 

h(p) = 0 and h(q) = 0 iff the segment (p, q) is collinear with L.

Exhibit 14.2: Segment s, its extended line L, and distance to points p, q as computed by function h.

type point  =  record  x, y: real  end;

segment  =  record  p1, p2: point  end;

function d(s: segment; p: point): real;

{ computes h(p) for the line L determined by s }

var dx, dy, L12: real;
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begin

dx := s.p2.x – s.p1.x;  dy := s.p2.y – s.p1.y;

L12 := sqrt(dx · dx + dy · dy);

return((dy · (p.x – s.p1.x) – dx · (p.y – s.p1.y)) / L12)

end;

To optimize the intersection function, we recall the assumption L12 > 0 and notice that we do not need the actual 

distance, only its sign. Thus the function d used below avoids computing L12. The function 'intersect'  begins by 

checking whether the two line segments are collinear, and if so, tests them for overlap by intersecting the intervals  

obtained by projecting the line segments onto the x-axis (or onto the y-axis, if  the segments are vertical). Two 

intervals [a, b] and [c, d] intersect iff min(a, b) ≤ max(c, d) and min(c, d) ≤ max(a, b). This condition could be 

simplified under the assumption that the representation of segments and intervals is ordered "from left to right" 

(i.e. for interval [a, b] we have a ≤ b). We do not assume this, as line segments often have a natural direction and 

cannot be "turned around".

function d(s: segment;  p: point): real;

begin

return((s.p2.y – s.p1.y) · (p.x – s.p1.x) – (s.p2.x – s.p1.x) · 

(p.y – s.p1.y))

end;

function overlap(a, b, c, d: real): boolean;

begin  return((min(a, b) ≤ max(c, d)) and (min(c, d) ≤ max(a, b))) 

end;

function intersect(s1, s2: segment): boolean;

var  d11, d12, d21, d22: real;

begin

d11 := d(s1, s2.p1);  d12 := d(s1, s2.p2);

if  (d11 = 0) and (d12 = 0)  then  { s1 and s2 are collinear }

if  s1.p1.x = s1.p2.x  then  { vertical }

return(overlap(s1.p1.y, s1.p2.y, s2.p1.y, s2.p2.y))

else  { not vertical }

return(overlap(s1.p1.x, s1.p2.x, s2.p1.x, s2.p2.x))

else  begin  { s1 and s2 are not collinear }

d21 := d(s2, s1.p1);  d22 := d(s2, s1.p2);

return((d11 · d12 ≤ 0) and (d21 · d22 ≤ 0))

end

end;

In addition to the degeneracy issues we have addressed, there are numerical issues of near-degeneracy that we  

only mention. The length L12 is a condition number (i.e. an indicator of the computation's accuracy). As Exhibit 14.3 

suggests, it may be numerically impossible to tell on which side of a short line segment L a distant point p lies.
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Exhibit 14.3: A point's distance from a segment amplifies the error of the "which side" computation.

Conclusion: A geometric algorithm must check for degenerate configurations explicitly—the code that handles 

configurations "in general position" will not handle degeneracies.

Clipping

The  widespread  use  of  windows  on  graphic  screens  makes  clipping  one  of  the  most  frequently  executed 

operations: Given a rectangular window and a configuration in the plane, draw that part of the configuration which  

lies within the window. Most configurations consist of line segments, so we show how to clip a line segment given  

by its endpoints (x1, y1) and (x2, y2) into a window given by its four corners with coordinates {left, right}  × {top, 

bottom}.

The position of a point in relation to the window is described by four boolean variables: ll (to the left of the left  

border), rr (to the right of the right border), bb (below the lower border), tt (above the upper border):

type  wcode = set of (ll, rr, bb, tt);

A point inside the window has the code ll = rr = bb = tt = false, abbreviated 0000 (Exhibit 14.4).

Exhibit 14.4: The clipping window partitions the plane into nine regions.

The procedure 'classify' determines the position of a point in relation to the window:

procedure classify(x, y: real; var c: wcode);

begin

c := Ø;  { empty set }

if  x < left  then  c := {ll}  elsif  x > right  then  c := {rr};

if  y < bottom  then  c := c ∪  {bb}  elsif  y > top  then c := c ∪ 
{tt}

end;

The procedure 'clip' computes the endpoints of the clipped line segment and calls the procedure 'showline' to  

draw it:

procedure clip(x1, y1, x2, y2: real);
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var  c, c1, c2: wcode;  x, y: real;  outside: boolean;

begin  { clip }

classify(x1, y1, c1);  classify(x2, y2, c2);  outside := false;

while  (c1 ≠ Ø) or (c2 ≠ Ø)  do

if  c1 ∩ c2 ≠ Ø  then
{ line segment lies completely outside the window }

{ c1 := Ø;  c2 := Ø;  outside := true }

else  begin

c := c1;

if  c = Ø  then  c := c2;

if  ll ∈  c  then  { segment intersects left }
{ y := y1 + (y2 – y1) · (left – x1) / (x2 – x1);  x := left }

elsif  rr ∈  c  then  { segment intersects right }
{ y := y1 + (y2 – y1) · (right – x1) / (x2 – x1); x := right }

elsif  bb ∈  c  then  { segment intersects bottom }
{ x := x1 + (x2 – x1) · (bottom – y1) / (y2 – y1); y := bottom }

elsif  tt ∈  c  then  { segment intersects top }
{ x := x1 + (x2 – x1) · (top – y1) / (y2 – y1);  y := top };

if  c = c1 then { x1 := x;  y1 := y;  classify(x, y, c1) }

else { x2 := x;  y2 := y;  classify(x, y, c2) }

end;

if  not outside  then  showline(x1, y1, x2, y2)

end;  { clip }

Drawing digitized lines

A raster graphics screen is an integer grid of pixels, each of which can be turned on or off. Euclidean geometry 

does not apply directly to such a discretized plane. Any designer using a CAD system will prefer Euclidean geometry 

to a discrete geometry as a model of the world. The problem of how to approximate the Euclidean plane by an  

integer grid turns out to be a hard question: How do we map Euclidean geometry onto a digitized space in such a 

way as to preserve the rich structure of geometry as much as possible? Let's begin with simple instances: How do 

you map a straight line onto an integer grid, and how do you draw it efficiently?  Exhibit 14.5 shows reasonable 

examples.

Exhibit 14.5: Digitized lines look like staircases.

Consider the slope m = (y2 – y1) / (x2 – x1) of a segment with endpoints p1 = (x1, y1) and p2 = (x2, y2). If |m| ≤ 1 we 

want one pixel blackened on each x coordinate; if |m| ≥ 1, one pixel on each y coordinate; these two requirements  

are consistent for diagonals with |m| = 1. Consider the case |m| ≤ 1. A unit step in x takes us from point (x, y) on the 

line to (x + 1, y + m). So for each x between x1 and x2 we paint the pixel (x, y) closest to the mathematical line 

according to the formula y = round(y1 + m · (x – x1)). For the case |m| > 1, we reverse the roles of x and y, taking a  

unit step in y and incrementing x by 1/m. The following procedure draws line segments with |m| ≤ 1 using unit  

steps in x.

procedure line(x1, y1, x2, y2: integer);

var  x, sx: integer;  m: real;
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begin

PaintPixel(x1, y1);

if  x1 ≠ x2  then  begin

x := x1;  sx := sgn(x2 – x1);  m := (y2 – y1) / (x2 – x1);

while  x ≠ x2  do

{ x := x + sx;  PaintPixel(x, round(y1 + m · (x – x1))) }

end

end;

This straightforward implementation has a number of disadvantages. First, it uses floating-point arithmetic to  

compute integer coordinates of pixels, a costly process. In addition, rounding errors may prevent the line from 

being reversible: reversibility means that we paint the same pixels, in reverse order, if we call the procedure with 

the two endpoints interchanged. Reversibility is desirable to avoid the following blemishes:  that a line painted 

twice, from both ends, looks thicker than other lines; worse yet, that painting a line from one end and erasing it 

from the other leaves spots on the screen. A weaker constraint, which is only concerned with the result and not the 

process of painting, is easy to achieve but is less useful.

Weak  reversibility is  most  easily  achieved  by  ordering  the  points  p1 and  p2 lexicographically  by  x  and  y 

coordinates, drawing every line from left to right, and vertical lines from bottom to top. This solution is inadequate 

for animation, where the direction of drawing is important, and the sequence in which the pixels are painted is  

determined by the application—drawing the trajectory of a falling apple from the bottom up will not do. Thus 

interactive graphics needs the stronger constraint.

Efficient  algorithms,  such  as  Bresenham's  [Bre  65],  avoid  floating-point  arithmetic  and  expensive 

multiplications through incremental computation: Starting with the current point p1, a next point is computed as a 

function of the current point and of the line segment parameters. It turns out that only a few additions, shifts, and  

comparisons are required. In the following we assume that the slope m of the line satisfies |m| ≤ 1. Let

∆x = x2 – x1,    sx = sign(∆x),        ∆y = y2 – y1,    sy = sign(∆y).

Assume that the pixel (x, y) is the last that has been determined to be the closest to the actual line, and we now 

want to decide whether the next pixel to be set is (x + sx, y) or (x + sx, y + sy). Exhibit 14.6 depicts the case sx = 1 

and sy = 1.

Exhibit 14.6: At the next coordinate x + sx, we identify and paint the pixel closest to the line.

Let t denote the absolute value of the difference between y and the point with abscissa x + sx on the actual line.  

Then t is given by
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The value of t determines the pixel to be drawn:

As the following example shows, reversibility is not an automatic consequence of the geometric fact that two  

points  determine  a  unique  line,  regardless  of  correct  rounding  or  the  order  in  which  the  two  endpoints  are  

presented. A problem arises when two grid points are equally close to the straight line (Exhibit 14.7).

Exhibit 14.7: Breaking the tie among equidistant grid points.

If  the tie  is  not  broken in  a  consistent  manner  (e.g.  by  always  taking the  upper  grid  point),  the resulting 

algorithm fails to be reversible:

All the variables introduced in this problem range over the integers, but the ratio
(Δ y)

(Δ x)
 appears to introduce 

rational expressions. This is easily remedied by multiplying everything with ∆x. We define the decision variable d as

d = |∆x| · (2 · t – 1) = sx · ∆x · (2 · t – 1). (∗∗ )

Let di denote the decision variable which determines the pixel (x (i), y(i)) to be drawn in the i-th step. Substituting t 

and inserting x = x(i–1) and y = y(i–1) in (∗∗ ) we obtain

di = sx · sy · (2·∆x · y1 + 2 · (x(i–1) + sx – x1) · ∆y – 2·∆x · y(i–1) – ∆x · sy)

and

di+1 = sx · sy · (2·∆x · y1 + 2 · (x(i) + sx – x1) · ∆y – 2·∆x · y(i) – ∆x · sy).

Subtracting di from di+1, we get

di+1 – di = sx · sy · (2 · (x(i) – x(i–1)) · ∆y – 2 · ∆x · (y(i) – y(i–1))).

Since x(i) – x(i–1) = sx, we obtain

di+1 = di + 2 · sy · ∆y – 2 · sx · ∆x · sy · (y(i) – y(i–1)).

Algorithms and Data Structures 125  A Global Text

http://creativecommons.org/licenses/by/3.0/


14. Straight lines and circles

If di < 0, or di = 0 and sy = –1, then y(i) = y(i–1), and therefore

di+1 = di + 2 · |∆y|.

If di > 0, or di = 0 and sy = 1, then y(i) = y(i–1) + sy, and therefore

di+1 = di + 2 · |∆y| – 2 · |∆x|.

This iterative computation of di+1 from the previous di lets us select the pixel to be drawn. The initial starting 

value for d1 is found by evaluating the formula for di, knowing that (x(0), y(0)) = (x1, y1). Then we obtain

d1 = 2 · |∆y| – |∆x|.

The arithmetic needed to evaluate these formulas is minimal: addition, subtraction and left shift (multiplication 

by 2). The following procedure implements this algorithm; it assumes that the slope of the line is between –1 and 1.

procedure BresenhamLine(x1, y1, x2, y2: integer);

var  dx, dy, sx, sy, d, x, y: integer;

begin

dx := |x2 – x1|;  sx := sgn(x2 – x1);

dy := |y2 – y1|;  sy := sgn(y2 – y1);

d := 2 · dy – dx;  x := x1;  y := y1;

PaintPixel(x, y);

while  x ≠ x2  do  begin

if  (d > 0) or ((d = 0) and (sy = 1))  then  { y := y + sy;– 

2·dx};

x := x + sx;  d := d + 2 · dy;

PaintPixel(x, y)

end

end;

The riddle of the braiding straight lines

Two straight lines in a plane intersect in at most one point, right? Important geometric algorithms rest on this  

well-known theorem of Euclidean geometry and would have to be reexamined if it were untrue. Is this theorem true 

for  computer lines,  that is, for data objects that represent and approximate straight lines to be processed by a 

program? Perhaps yes, but mostly no.

Yes. It is possible, of course, to program geometric problems in such a way that every pair of straight lines has at  

most, or exactly, one intersection point. This is most readily achieved through symbolic computation. For example,  

if the intersection of L1 and L2 is denoted by an expression 'Intersect(L1, L2)' that is never evaluated but simply 

combined with other expressions to represent a geometric construction, we are free to postulate that 'Intersect(L 1, 

L2)' is a point.

No.  For  reasons  of  efficiency,  most  computer  applications  of  geometry  require  the  immediate  numerical  

evaluation of every geometric operation. This calculation is done in a discrete, finite number system in which case 

the theorem need not be true. This fact is most easily seen if  we work with a discrete plane of pixels, and we 

represent a straight line by the set of all pixels touched by an ideal mathematical line.  Exhibit 14.8 shows three 

digitized straight lines in such a square grid model of plane geometry. Two of the lines intersect in a common  

interval of three pixels, whereas two others have no pixel in common, even though they obviously intersect.
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Exhibit 14.8: Two intersecting lines may share none, one, or more pixels.

With floating-point arithmetic the situation is more complicated; but the fact remains that the Euclidean plane  

is replaced by a discrete set of points embedded in the plane—all those points whose coordinates are representable 

in the particular number system being used. Experience with numerical computation, and the hazards of rounding 

errors,  suggests that the question "In how many points can two straight lines  intersect?" admits the following 

answers:

• There is no intersection—the mathematically correct intersection cannot be represented in the number 

system.

• A set of points that lie close to each other: for example, an interval.

• Overflow aborts the calculation before a result is computed, even if the correct result is representable in the 

number system being used.

Exercise: two lines intersect in how many points?

Construct  examples  to  illustrate  these  phenomena  when  using  floating-point  arithmetic.  Choose  a  suitable 

system G of floating-point numbers and two distinct straight lines

ai · x + bi · y + ci = 0  with  ai, bi, ci ∈  G, i=1, 2,

such that, when all operations are performed in G:

(a) There is no point whose coordinates x, y ∈ G satisfy both linear equations.

(b) There are many points whose coordinates x, y ∈ G satisfy both linear equations.

(c) There is exactly one point whose coordinates x, y ∈  G satisfy both linear equations, but the straightforward 

computation of x and y leads to overflow.

(d) As a consequence of (a) it follows that the definition "two lines intersect  they share a common point" is  

inappropriate for numerical computation. Formulate a numerically meaningful definition of the statement 

"two line segments intersect".

Exercise (b) may suggest that the points shared by two lines are neighbors. Pictorially, if the slopes of the two 

lines are almost identical, we expect to see a blurred, elongated intersection. We will show that worse things may  

happen: two straight lines may intersect in arbitrarily many points, and these points are separated by intervals in  

which the two lines alternate in lying on top of each other. Computer lines may be braided! To understand this 
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phenomenon, we need to clarify some concepts: What exactly is a straight line represented on a computer? What is  

an intersection?

There is no one answer, there are many! Consider the analogy of the mathematical concept of real numbers, 

defined by axioms. When we approximate real numbers on a computer, we have a choice of many different number 

systems  (e.g.  various  floating-point  number  systems,  rational  arithmetic  with  variable  precision,  interval  

arithmetic).  These  systems  are  typically  not  defined  by  means  of  axioms,  but  rather  in  terms  of  concrete  

representations  of  the  numbers  and  algorithms  for  executing  the  operations  on  these  numbers.  Similarly,  a 

computer line will be defined in terms of a concrete representation (e.g. two points, a point and a slope, or a linear  

expression).  All  we  obtain  depends  on  the  formulas  we  use  and  on  the  basic  arithmetic  to  operate  on  these  

representations. The notion of a straight line can be formalized in many different ways, and although these are 

likely  to  be  mathematically  equivalent,  they  will  lead  to  data  objects  with  different  behavior  when  evaluated  

numerically. Performing an operation consists of evaluating a formula. Substituting a formula by a mathematically  

equivalent  one  may  lead  to  results  that  are  topologically  different,  because  equivalent  formulas  may  exhibit 

different sensitivities toward rounding errors.

Consider a computer that has only integer arithmetic, i.e. we use only the operations +, –, ·, div. Let Z be the set  

of integers. Two straight lines gi (i = 1, 2) are given by the following equations:

ai · x + bi · y + ci = 0  with  ai, bi, ci ∈  Z;  bi ≠ 0.

We consider the problem of whether two given straight lines intersect in a given point x0. We use the following 

method: Solve the equations for y [i. e. y = E1(x) and y = E2(x)] and test whether E1(x0) is equal to E2(x0).

Is this method suitable? First, we need the following definitions:

x ∈ Z is a turn for the pair (E1, E2) iff

sign(E1(x) – E2(x))  ≠  sign(E1(x + 1) – E2(x + 1)).

An algorithm for the intersection problem is correct iff there are at most two turns.

The intuitive idea behind this definition is the recognition that rounding errors may force us to deal with an 

intersection interval rather than a single intersection point; but we wish to avoid separate intervals. The definition 

above partitions the x-axis into at most three disjoint intervals such that in the left interval the first line lies above  

or  below  the  second  line,  in  the  middle  interval  the  lines  "intersect",  and  in  the  right  interval  we  have  the 

complementary relation of the left one (Exhibit 14.9).
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Exhibit 14.9: Desirable consistency condition for intersection of nearly parallel lines.

Consider the straight lines:

3 · x – 5 · y + 40 = 0 and 2 · x – 3 · y + 20 = 0

which lead to the evaluation formulas

Our naive approach compares the expressions

(3 · x + 40) div 5 and (2 · x + 20) div 3.

Using the definitions it is easy to calculate that the turns are

7, 8, 10, 11, 12, 14, 15, 22, 23, 25, 26, 27, 29, 30.

The straight lines have become step functions that intersect many times. They are braided (Exhibit 14.10).

Exhibit 14.10: Braiding straight lines violate the consistency condition of Exhibit 14.9.

Exercise: show that the straight lines

x – 2 · y = 0

k · x – (2 · k + 1) · y = 0 for any integer k > 0
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have 2 · k – 1 turns in the first quadrant.

Is  braiding  due  merely  to  integer  arithmetic?  Certainly  not:  rounding  errors  also  occur  in  floating-point 

arithmetic,  and  we  can  construct  even  more  pathological  behavior.  As  an  example,  consider  a  floating-point 

arithmetic with a two-decimal-digit mantissa. We perform the evaluation operation:

and truncate intermediate results immediately to two decimal places. Consider the straight lines (Exhibit 14.11)

4.3 · x – 8.3 · y = 0,

1.4 · x – 2.7 · y = 0.

Exhibit 14.11: Example to be verified by manual computation.

These examples were constructed by intersecting straight lines with almost the same slope—a numerically ill-

conditioned problem. While working with integer arithmetic, we made the mistake of using the error-prone 'div' 

operator. The comparison of rational expressions does not require division.

Let a1 · x + b1 · y + c1 = 0 and a2 · x + b2 · y + c2 = 0 be two straight lines. To find out whether they intersect at x0, 

we have to check whether the equality

holds. This is equivalent to  b2 · c1 – b1 · c2 = x0 · (a2 · b1 – a1 · b2).

The last formula can be evaluated without error if sufficiently large integer arguments are allowed. Another way 

to evaluate this formula without error is to limit the size of the operands. For example, if a i, bi, ci, and x0 are n-digit 

binary numbers, it suffices to be able to represent 3n-digit binary numbers and to compute with n-digit and 2n-

digit binary numbers.

These  examples  demonstrate  that  programming  even  a  simple  geometric  problem  can  cause  unexpected 

difficulties. Numerical computation forces us to rethink and redefine elementary geometric concepts.
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Digitized circles 

The concepts, problems and techniques we have discussed in this chapter are not at all restricted to dealing with 

straight lines—they have their counterparts for any kind of digitized spatial object. Straight lines, defined by linear 

formulas, are the simplest nontrivial spatial objects and thus best suited to illustrate problems and solutions. In this  

section we show that the incremental drawing technique generalizes in a straightforward manner to more complex  

objects such as circles.

The basic parameters that define a circle are the center coordinates (xc, yc) and the radius r. To simplify the 

presentation we first  consider a  circle  with radius  r  centered around the origin.  Such a  circle is  given  by the  

equation

x2 + y2 = r2.

Efficient  algorithms for  drawing circles,  such as  Bresenham's  [Bre  77],  avoid  floating-point  arithmetic  and 

expensive multiplications through incremental  computation: A new point is computed depending on the current 

point  and on the circle parameters.  Bresenham's circle algorithm was conceived for use with pen plotters and 

therefore generates all points on a circle centered at the origin by incrementing all the way around the circle. We 

present a modified version of his algorithm which takes advantage of the eight-way symmetry of a circle. If (x, y) is 

a point on the circle, we can easily determine seven other points lying on the circle ( Exhibit 14.12). We consider only 

the 45˚ segment of the circle shown in the figure by incrementing from x = 0 to x = y = r / , and use eight-way  

symmetry to display points on the entire circle.

Exhibit 14.12: Eightfold symmetry of the circle.

Assume that the pixel p = (x, y) is the last that has been determined to be closest to the actual circle, and we now 

want to decide whether the next pixel to be set is p1 = (x + 1, y) or p2 = (x + 1, y – 1). Since we restrict ourselves to 

the 45˚ circle segment shown above these pixels are the only candidates. Now define

d' = (x + 1)2 + y2 – r2

d" = (x + 1)2 + (y – 1)2 – r2

which are the differences between the squared distances from the center of the circle to p 1 (or p2) and to the actual 

circle. If |d'| ≤ |d"|, then p1 is closer (or equidistant) to the actual circle; if |d'| > |d"|, then p2 is closer. We define the 

decision variable d as

d = d' + d". (∗∗ )

We will show that the rule

If d ≤ 0 then select p1 else select p2.
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correctly selects the pixel that is closest to the actual circle. Exhibit 14.13 shows a small part of the pixel grid and 

illustrates the various possible ways [(1) to (5)] how the actual circle may intersect the vertical line at x + 1 in 

relation to the pixels p1 and p2.

Exhibit 14.13: For a given octant of the circle, if pixel p is lit, only two other pixels 

p1 and p2 need be examined.

In cases (1) and (2) p2 lies inside, p1 inside or on the circle, and we therefore obtain d' ≤ 0 and d" < 0. Now d < 0,  

and applying the rule above will lead to the selection of p 1. Since |d'| ≤ |d"| this selection is correct. In case (3) p 1 

lies outside and p2 inside the circle and we therefore obtain d' > 0 and d" < 0. Applying the rule above will lead to  

the selection of p1 if d ≤ 0, and p2 if d > 0. This selection is correct since in this case d ≤ 0 is equivalent to |d'| ≤ |d"|.  

In cases (4) and (5) p1 lies outside, p2 outside or on the circle and we therefore obtain d' > 0 and d" ≥ 0. Now d > 0, 

and applying the rule above will lead to the selection of p2. Since |d'| > |d"| this selection is correct.

Let di denote the decision variable that determines the pixel (x (i), y(i)) to be drawn in the i-th step. Starting with 

(x(0), y(0)) = (0, r) we obtain

d1 = 3 – 2 · r.

If di ≤ 0, then (x(i), y(i)) = (x(i) + 1, y(i–1)), and therefore

di+1 = di + 4 · xi–1 + 6.

If di > 0, then (x(i), y(i)) = (x(i) + 1, y(i–1) – 1), and therefore

di+1 = di + 4 · (xi–1 – yi–1) + 10.

This iterative computation of di+1 from the previous di lets us select the correct pixel to be drawn in the (i + 1)-th 

step.  The  arithmetic  needed  to  evaluate  these  formulas  is  minimal:  addition,  subtraction,  and  left  shift 

(multiplication by 4). The following procedure 'BresenhamCircle' which implements this algorithm draws a circle 

with center (xc, yc) and radius r. It uses the procedure 'CirclePoints' to display points on the entire circle. In the 

cases x = y or r = 1 'CirclePoints' draws each of four pixels twice. This causes no problem on a raster display.

procedure BresenhamCircle(xc, yc, r: integer);

procedure CirclePoints(x, y: integer);

begin

PaintPixel(xc + x, yc + y); PaintPixel(xc – x, yc + y);

PaintPixel(xc + x, yc – y); PaintPixel(xc – x, yc – y);

PaintPixel(xc + y, yc + x); PaintPixel(xc – y, yc + x);

PaintPixel(xc + y, yc – x); PaintPixel(xc – y, yc – x)

end;
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var  x, y, d: integer;

begin

x := 0;  y := r;  d := 3 – 2 · r;

while  x < y  do  begin

CirclePoints(x, y);

if  d < 0 then d := d + 4 · x + 6

else { d := d + 4 · (x – y) + 10;  y := y – 1 };

x := x + 1

end;

if  x = y  then  CirclePoints(x, y)

end;    .i).Bresenham's algorithm:circle;

Exercises and programming projects

1. Design and implement an efficient geometric primitive which determines whether two aligned rectangles 

(i.e. rectangles with sides parallel to the coordinate axes) intersect.

2. Design and implement a geometric primitive

function inTriangle(t: triangle; p: point): …;

which takes a triangle t given by its three vertices and a point p and returns a ternary value: p is inside t, p 

is on the boundary of t, p is outside t.

3. Use the functions 'intersect' of in "Intersection" and 'inTriangle' above to program a

function SegmentIntersectsTriangle(s: segment; t: triangle): …;

to check whether segment s and triangle t share common points.  'SegmentIntersectsTriangle' returns a 

ternary value: yes, degenerate, no. List all distinct cases of degeneracy that may occur, and show how your 

code handles them.

4. Implement Bresenham's incremental algorithms for drawing digitized straight lines and circles.

5. Two circles (x', y',  r') and (x'', y'', r'') are given by the coordinates of their center and their radius. Find  

effective formulas for deciding the three-way question whether  (a)  the circles intersect as lines, (b) the 

circles intersect as disks, or (c) neither. Avoid the square-root operation whenever possible.
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